Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 932
1.
Cell Death Differ ; 31(4): 405-416, 2024 Apr.
Article En | MEDLINE | ID: mdl-38538744

BH3 mimetics, including the BCL2/BCLXL/BCLw inhibitor navitoclax and MCL1 inhibitors S64315 and tapotoclax, have undergone clinical testing for a variety of neoplasms. Because of toxicities, including thrombocytopenia after BCLXL inhibition as well as hematopoietic, hepatic and possible cardiac toxicities after MCL1 inhibition, there is substantial interest in finding agents that can safely sensitize neoplastic cells to these BH3 mimetics. Building on the observation that BH3 mimetic monotherapy induces AMP kinase (AMPK) activation in multiple acute leukemia cell lines, we report that the AMPK inhibitors (AMPKis) dorsomorphin and BAY-3827 sensitize these cells to navitoclax or MCL1 inhibitors. Cell fractionation and phosphoproteomic analyses suggest that sensitization by dorsomorphin involves dephosphorylation of the proapoptotic BCL2 family member BAD at Ser75 and Ser99, leading BAD to translocate to mitochondria and inhibit BCLXL. Consistent with these results, BAD knockout or mutation to BAD S75E/S99E abolishes the sensitizing effects of dorsomorphin. Conversely, dorsomorphin synergizes with navitoclax or the MCL1 inhibitor S63845 to induce cell death in primary acute leukemia samples ex vivo and increases the antitumor effects of navitoclax or S63845 in several xenograft models in vivo with little or no increase in toxicity in normal tissues. These results suggest that AMPK inhibition can sensitize acute leukemia to multiple BH3 mimetics, potentially allowing administration of lower doses while inducing similar antineoplastic effects.


AMP-Activated Protein Kinases , Aniline Compounds , Myeloid Cell Leukemia Sequence 1 Protein , Pyrimidines , Sulfonamides , bcl-X Protein , Humans , Animals , Aniline Compounds/pharmacology , Sulfonamides/pharmacology , AMP-Activated Protein Kinases/metabolism , Mice , bcl-X Protein/metabolism , bcl-X Protein/antagonists & inhibitors , Cell Line, Tumor , Pyrimidines/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Pyrazoles/pharmacology , bcl-Associated Death Protein/metabolism , Apoptosis/drug effects , Cell Death/drug effects , Leukemia/drug therapy , Leukemia/pathology , Leukemia/metabolism , Phosphorylation/drug effects , Peptide Fragments/pharmacology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Drug Synergism
2.
Int J Biol Macromol ; 226: 915-926, 2023 Jan 31.
Article En | MEDLINE | ID: mdl-36521710

RNA-binding proteins (RBP) regulate several aspects of co- and post-transcriptional gene expression in cancer cells. CSTF2 is involved in the expression of many cellular mRNAs and involved in the 3'-end cleavage and polyadenylation of pre-mRNAs to terminate transcription. However, the role of CSTF2 in human glioblastoma (GBM) and the underlying mechanisms remain unclear. In the present study, CSTF2 was found to be upregulated in GBM, and its high expression predicted poor prognosis. Knockdown CSTF2 induced GBM cell apoptosis both in vitro and in vivo. Specific mechanism studies showed that CSTF2 unstabilized the mRNA of the BAD protein by shortening its 3' UTR. Additionally, an increase in the expression level of CSTF2 decreased the expression level of BAD. In conclusion, CSTF2 binds to the mRNA of the BAD protein to shorten its 3'UTR, which negatively affects the BAD mediated apoptosis and promotes GBM cell survival.


Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/genetics , Glioblastoma/metabolism , bcl-Associated Death Protein/genetics , bcl-Associated Death Protein/metabolism , Apoptosis/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Cell Proliferation/genetics , Brain Neoplasms/genetics , Brain Neoplasms/metabolism
3.
Article Zh | MEDLINE | ID: mdl-36229210

Objective: To investigate the effect of arsenic and its main metabolites on the apoptosis of human lung adenocarcinoma cell line A549 and the expression of pro-apoptotic genes Bad and Bik. Methods: In October 2020, A549 cells were recovered and cultured, and the cell viability was detected by the cell counting reagent CCK-8 to determine the concentration and time of sodium arsenite exposure to A549. The study was divided into NaAsO(2) exposure groups and metobol: le expoure groups: the metabolite comparison groups were subdivided into the control group, the monomethylarsinic acid exposure group (60 µmol/L) , and the dimethylarsinic acid exposure group (60 µmol/L) ; sodium arsenite dose groups were subdivided into 4 groups: control group (0) , 20, 40, 60 µmol/L sodium arsenite NaAsO(2). Hoechst 33342/propidium iodide double staining (Ho/PI) was used to observe cell apoptosis and real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression levels of Bad and Bik mRNA in cells after exposure. Western blotting was used to detect the protein expressions of Bad, P-Bad-S112, Bik, cleaved Bik and downstream proteins poly ADP-ribose polymerase PARP1 and cytochrome C (Cyt-C) , using spectrophotometry to detect the activity changes of caspase 3, 6, 8, 9. Results: Compared with the control group, the proportion of apoptotic cells in the 20, 40, and 60 µmol/L NaAsO(2) dose groups increased significantly (P<0.01) , and the expression levels of Bad, Bik mRNA, the protein expression levels of Bad, P-Bad-S112, Bik, cleaved Bik, PARP1, Cyt-C were increased (all P<0.05) , and the activities of Caspase 3, 6, 8, and 9 were significantly increased with significantly differences (P<0.05) . Compared with the control group, the expression level of Bad mRNA in the DMA exposure group (1.439±0.173) was increased with a significant difference (P=0.024) , but there was no significant difference in the expression level of Bik mRNA (P=0.788) . There was no significant differences in the expression levels of Bad and Bik mRNA in the poison groups (P=0.085, 0.063) . Compared with the control group, the gray values of proteins Bad, Bik, PARP1 and Cyt-C exposed to MMA were 0.696±0.023, 0.707±0.014, 0.907±0.031, 1.032±0.016, and there was no significant difference between the two groups (P=0.469, 0.669, 0.859, 0.771) ; the gray values of proteins Bad, Bik, PARP1 and Cyt-C exposed to DMA were 0.698±0.030, 0.705±0.022, 0.908±0.015, 1.029±0.010, and there was no difference between the two groups (P=0.479, 0.636, 0.803, 0.984) . Conclusion: Sodium arsenite induces the overexpression of Bad and Bik proteins, initiates the negative feedback regulation of phosphorylated Bad and the degradation of Bik, activates the downstream proteins PARP1, Cyt-C and Caspase pathways, and mediates the apoptosis of A549 cells.


Arsenic , Poisons , A549 Cells , Adenosine Diphosphate Ribose/pharmacology , Apoptosis , Apoptosis Regulatory Proteins , Arsenites , Cacodylic Acid/pharmacology , Caspase 3 , Caspases/pharmacology , Cytochromes c/pharmacology , Humans , Mitochondrial Proteins/pharmacology , Propidium/pharmacology , RNA, Messenger , Sincalide/pharmacology , Sodium Compounds , bcl-Associated Death Protein/metabolism
4.
J Vet Sci ; 23(6): e84, 2022 Nov.
Article En | MEDLINE | ID: mdl-36259103

BACKGROUND: Stroke is caused by disruption of blood supply and results in permanent disabilities as well as death. Chlorogenic acid is a phenolic compound found in various fruits and coffee and exerts antioxidant, anti-inflammatory, and anti-apoptotic effects. OBJECTIVES: The purpose of this study was to investigate whether chlorogenic acid regulates the PI3K-Akt-Bad signaling pathway in middle cerebral artery occlusion (MCAO)-induced damage. METHODS: Chlorogenic acid (30 mg/kg) or vehicle was administered peritoneally to adult male rats 2 h after MCAO surgery, and animals were sacrificed 24 h after MCAO surgery. Neurobehavioral tests were performed, and brain tissues were isolated. The cerebral cortex was collected for Western blot and immunoprecipitation analyses. RESULTS: MCAO damage caused severe neurobehavioral disorders and chlorogenic acid improved the neurological disorders. Chlorogenic acid alleviated the MCAO-induced histopathological changes and decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. Furthermore, MCAO-induced damage reduced the expression of phospho-PDK1, phospho-Akt, and phospho-Bad, which was alleviated with administration of chlorogenic acid. The interaction between phospho-Bad and 14-3-3 levels was reduced in MCAO animals, which was attenuated by chlorogenic acid treatment. In addition, chlorogenic acid alleviated the increase of cytochrome c and caspase-3 expression caused by MCAO damage. CONCLUSIONS: The results of the present study showed that chlorogenic acid activates phospho-Akt and phospho-Bad and promotes the interaction between phospho-Bad and 14-3-3 during MCAO damage. In conclusion, chlorogenic acid exerts neuroprotective effects by activating the Akt-Bad signaling pathway and maintaining the interaction between phospho-Bad and 14-3-3 in ischemic stroke model.


Brain Ischemia , Chlorogenic Acid , Stroke , Animals , Male , Rats , Apoptosis , bcl-Associated Death Protein/metabolism , Brain Ischemia/veterinary , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Disease Models, Animal , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/veterinary , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Stroke/drug therapy , Stroke/veterinary , 14-3-3 Proteins/metabolism
5.
Cells ; 10(11)2021 10 20.
Article En | MEDLINE | ID: mdl-34831043

Studies have shown that the BH3-only domain Bad regulates brain development via the control of programmed cell death (PCD), but very few studies have addressed its effect on the molecular signaling of brain development in the system. In this work, we examined the novel role of zebrafish Bad in initial programmed cell death for brain morphogenesis through the priming of p53-mediated stress signaling. In a biological function study on the knockdown of Bad by morpholino oligonucleotides, at 24 h post-fertilization (hpf) Bad defects induced abnormal hindbrain development, as determined in a tissue section by means of HE staining which traced the damaged hindbrain. Then, genome-wide approaches for monitoring either the upregulation of apoptotic-related genes (11.8%) or the downregulation of brain development-related genes (29%) at the 24 hpf stage were implemented. The p53/caspase-8-mediated apoptotic death pathway was strongly involved, with the pathway being strongly reversed in a p53 mutant (p53M214K) line during Bad knockdown. Furthermore, we propose the involvement of a p53-mediated stress signal which is correlated with regulating Bad loss-mediated brain defects. We found that some major genes in brain development, such as crybb1, pva1b5, irx4a, pax7a, and fabp7a, were dramatically restored in the p53M214K line, and brain development recovered to return movement behavior to normal. Our findings suggest that Bad is required for (PCD) control, exerting a p53 stress signal on caspase-8/tBid-mediated death signaling and brain development-related gene regulation.


Apoptosis/genetics , Brain/embryology , Brain/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Zebrafish Proteins/genetics , Zebrafish/embryology , Zebrafish/genetics , bcl-Associated Death Protein/genetics , Animals , Animals, Genetically Modified , Caspase 8/metabolism , Down-Regulation/genetics , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , Genome , Loss of Function Mutation/genetics , Morphogenesis/genetics , Rhombencephalon/embryology , Rhombencephalon/metabolism , Swimming , Zebrafish Proteins/metabolism , bcl-Associated Death Protein/metabolism
6.
Int J Mol Sci ; 22(20)2021 Oct 12.
Article En | MEDLINE | ID: mdl-34681659

The design and development of a small molecule named NPB [3-{(4(2,3-dichlorophenyl)piperazin-1-yl}{2-hydroxyphenyl)methyl}-N-cyclopentylbenzamide], which specifically inhibited the phosphorylation of BAD at Ser99 in human carcinoma cells has been previously reported. Herein, the synthesis, characterization, and effect on cancer cell viability of NPB analogs, and the single-crystal X-ray crystallographic studies of an example compound (4r), which was grown via slow-solvent evaporation technique is reported. Screening for loss of viability in mammary carcinoma cells revealed that compounds such as 2[(4(2,3-dichlorophenyl)piperazin-1-yl][naphthalen-1-yl]methyl)phenol (4e), 5[(4(2,3-dichlorophenyl)piperazin-1-yl][2-hydroxyphenyl)methyl)uran-2-carbaldehyde (4f), 3[(2-hydroxyphenyl][4(p-tolyl)piperazin-1-yl)methyl)benzaldehyde (4i), and NPB inhibited the viability of MCF-7 cells with IC50 values of 5.90, 3.11, 7.68, and 6.5 µM, respectively. The loss of cell viability was enhanced by the NPB analogs synthesized by adding newer rings such as naphthalene and furan-2-carbaldehyde in place of N-cyclopentyl-benzamide of NPB. Furthermore, these compounds decreased Ser99 phosphorylation of hBAD. Additional in silico density functional theory calculations suggested possibilities for other analogs of NPB that may be more suitable for further development.


Nitrobenzenes/chemistry , bcl-Associated Death Protein/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Crystallography, X-Ray , Density Functional Theory , Female , Humans , MCF-7 Cells , Molecular Conformation , Nitrobenzenes/pharmacology , Phosphorylation/drug effects , Serine/metabolism
7.
Cancer Invest ; 39(10): 854-870, 2021 Nov.
Article En | MEDLINE | ID: mdl-34569407

The novel anti-neoplastic glycopeptide T11TS retards glioma both in in-vitro clinical samples and in-vivo models. This study investigates the correlation between altering the glioma microenvironment with glioma arrest and death. Flow cytometry, immunoblotting, ELISA, and co-immunoprecipitation were employed to investigate glioma cell arrest and death. Results include a decline in phosphorylation of Akt and attenuation of p21 phosphorylation (Thr145,Ser146) and disassociation of p-Akt-Mdm2 and p-Akt-BAD facilitating death by Akt>BAD. T11TS influence phosphorylation patterns in two focal axes Akt>p21 and Akt>Mdm2>p53. The current article provides crucial insight in deciphering the mechanism of T11TS induced glioma cell arrest and death.


Brain Neoplasms/drug therapy , CD58 Antigens/pharmacology , Glioma/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , CD58 Antigens/therapeutic use , Cell Cycle Checkpoints/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Female , Glioma/metabolism , Glioma/pathology , Male , PTEN Phosphohydrolase/analysis , Phosphorylation , Proto-Oncogene Proteins c-mdm2/analysis , Rats , Rats, Wistar , Tumor Microenvironment , Tumor Suppressor Protein p53/analysis , bcl-Associated Death Protein/metabolism
8.
Acta Biochim Biophys Sin (Shanghai) ; 53(11): 1459-1468, 2021 Nov 10.
Article En | MEDLINE | ID: mdl-34549778

The widespread use of chlorothalonil (CTL) has caused environmental residues and food contamination. Although the intestinal epithelial barrier (IEB) is directly involved in the metabolism and transportation of various exogenous compounds, there are few studies on the toxic effects of these compounds on the structure and function of IEB. The disassembly of tight junction (TJ) is a major cause of intestinal barrier dysfunction under exogenous compounds intake, but the precise mechanisms are not well understood. Here, we used Caco-2 cell monolayers as an in vitro model of human IEB to evaluate the toxicity of CTL exposure on the structure and function of IEB. Results showed that CTL exposure increased the paracellular permeability of the monolayers and downregulated mRNA levels of the TJ genes (ZO-1, OCLN, and CLDN1), polarity marker gene (SI), and anti-apoptosis gene (BCL-2) but upregulated the mRNA levels of apoptosis-related genes, including BAD, BAX, CASP3, and CASP8. Western blot analysis and immunofluorescence assay results showed the decreased levels and disrupted distribution of TJ protein network, including ZO-1 and CLDN1 in CTL-exposed IEB. In addition, the accumulation of intracellular reactive oxygen species, decreased mitochondrial membrane potential, and increased active CASP3 expression were observed in treated IEB. The result of TUNEL assay further confirmed the occurrence of cell apoptosis after CTL exposure. In addition, the phosphorylation of mitogen-activated protein kinases, including ERK, JNK and p38, was increased in CTL-exposed IEB. In summary, our results demonstrated that CTL exposure induced IEB dysfunction in Caco-2 cell monolayers by activating the mitogen-activated protein kinase pathway.


Extracellular Signal-Regulated MAP Kinases/genetics , Fungicides, Industrial/toxicity , Intestinal Mucosa/drug effects , MAP Kinase Signaling System/genetics , Nitriles/toxicity , Tight Junctions/drug effects , Caco-2 Cells , Caspase 3/genetics , Caspase 3/metabolism , Caspase 8/genetics , Caspase 8/metabolism , Claudin-1/genetics , Claudin-1/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Models, Biological , Occludin/genetics , Occludin/metabolism , Permeability/drug effects , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Tight Junctions/metabolism , Zonula Occludens-1 Protein/genetics , Zonula Occludens-1 Protein/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , bcl-Associated Death Protein/genetics , bcl-Associated Death Protein/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
9.
Bull Exp Biol Med ; 171(3): 357-361, 2021 Jul.
Article En | MEDLINE | ID: mdl-34297287

We studied the effect of technogenic radiation on the degree of promoter methylation in genes involved in apoptosis in blood lymphocytes of workers exposed to long-term γ-radiation during their professional activities. Blood samples for the analysis were obtained from 11 conventionally healthy men aged from 54 to 71 years (mean 66 years), workers of the Siberian Group of Chemical Enterprises working experience from 27 to 40 years (mean 30 years); the external exposure dose was 175.88 mSv (158.20-207.81 mSv). In all examined subjects, the degree of methylation of the promoters of apoptosis-related genes ranged from 0.22 to 50.00%. A correlation was found between the degree of methylation of BCLAF1 promoters (p=0.035) with the age of workers, BAX promoters (p=0.0289) with high content of aberrant cells, and APAF1 promoters (p=0.0152) with increased number of dicentric chromosomes. A relationship was found between the dose of external irradiation and the degree of methylation of gene promoters of BAD (p=0.0388), BID (р=0.0426), and HRK (р=0.0101) genes.


Chromosome Aberrations/radiation effects , DNA Methylation , Epigenesis, Genetic , Lymphocytes/radiation effects , Occupational Exposure/adverse effects , Promoter Regions, Genetic , Radiation Exposure/adverse effects , Aged , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Apoptotic Protease-Activating Factor 1/genetics , Apoptotic Protease-Activating Factor 1/metabolism , BH3 Interacting Domain Death Agonist Protein/genetics , BH3 Interacting Domain Death Agonist Protein/metabolism , Chromosome Aberrations/classification , Gamma Rays/adverse effects , Humans , Lymphocytes/metabolism , Lymphocytes/pathology , Male , Middle Aged , Radiometry , Repressor Proteins/genetics , Repressor Proteins/metabolism , Siberia , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , bcl-Associated Death Protein/genetics , bcl-Associated Death Protein/metabolism
10.
Cell Death Dis ; 12(8): 739, 2021 07 27.
Article En | MEDLINE | ID: mdl-34315852

Activation of the apoptotic pathway is a major cause of progressive loss of function in chronic diseases such as neurodegenerative and diabetic kidney diseases. There is an unmet need for an anti-apoptotic drug that acts in the early stage of the apoptotic process. The multifunctional protein Na+,K+-ATPase has, in addition to its role as a transporter, a signaling function that is activated by its ligand, the cardiotonic steroid ouabain. Several lines of evidence suggest that sub-saturating concentrations of ouabain protect against apoptosis of renal epithelial cells, a common complication and major cause of death in diabetic patients. Here, we induced apoptosis in primary rat renal epithelial cells by exposing them to an elevated glucose concentration (20 mM) and visualized the early steps in the apoptotic process using super-resolution microscopy. Treatment with 10 nM ouabain interfered with the onset of the apoptotic process by inhibiting the activation of the BH3-only protein Bad and its translocation to mitochondria. This occurred before the pro-apoptotic protein Bax had been recruited to mitochondria. Two ouabain regulated and Akt activating Ca2+/calmodulin-dependent kinases were found to play an essential role in the ouabain anti-apoptotic effect. Our results set the stage for further exploration of ouabain as an anti-apoptotic drug in diabetic kidney disease as well as in other chronic diseases associated with excessive apoptosis.


Apoptosis , Cytoprotection , Glucose/toxicity , Microscopy , Signal Transduction , Sodium-Potassium-Exchanging ATPase/metabolism , bcl-Associated Death Protein/metabolism , Animals , Apoptosis/drug effects , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cytoprotection/drug effects , Cytosol/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Kidney/pathology , Male , Mitochondria/drug effects , Mitochondria/metabolism , Models, Biological , Ouabain/pharmacology , Protein Binding/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Time Factors , bcl-2-Associated X Protein/metabolism , bcl-X Protein/metabolism
11.
Int J Mol Sci ; 22(9)2021 May 02.
Article En | MEDLINE | ID: mdl-34063300

The BH3-only molecule Bad regulates cell death via its differential protein phosphorylation, but very few studies address its effect on early embryonic development in vertebrate systems. In this work, we examined the novel role of zebrafish Bad in the initial programmed cell death (PCD) for brain morphogenesis through reducing environmental stress and cell death signaling. Bad was considered to be a material factor that because of the knockdown of Bad by morpholino oligonucleotides, PCD was increased and the reactive oxygen species (ROS) level was enhanced, which correlated to trigger a p53/caspase-8 involving cell death signaling. This Bad knockdown-mediated environmental stress and enhanced cell dying can delay normal cell migration in the formation of the three germ layers, especially the ectoderm, for further brain development. Furthermore, Bad defects involved in three-germ-layers development at 8 hpf were identified by in situ hybridization approach on cyp26, rtla, and Sox17 pattern expression markers. Finally, the Bad knockdown-induced severely defected brain was examined by tissue section from 24 to 48 h postfertilization (hpf), which correlated to induce dramatic malformation in the hindbrain. Our data suggest that the BH3-only molecule Bad regulates brain development via controlling programmed cell death on overcoming environmental stress for reducing secondary cell death signaling, which suggests that correlates to brain developmental and neurological disorders in this model system.


Brain/embryology , Brain/growth & development , Embryonic Development , Zebrafish/embryology , Zebrafish/metabolism , bcl-Associated Death Protein/metabolism , Animals , Apoptosis , Brain/pathology , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Genes, p53 , Morpholinos/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , bcl-Associated Death Protein/genetics
12.
Int J Mol Sci ; 22(9)2021 May 04.
Article En | MEDLINE | ID: mdl-34064489

Melanoma represents one of the most aggressive and drug resistant skin cancers with poor prognosis in its advanced stages. Despite the increasing number of targeted therapies, novel approaches are needed to counteract both therapeutic resistance and the side effects of classic therapy. Betulinic acid (BA) is a bioactive phytocompound that has been reported to induce apoptosis in several types of cancers including melanomas; however, its effects on mitochondrial bioenergetics are less investigated. The present study performed in A375 human melanoma cells was aimed to characterize the effects of BA on mitochondrial bioenergetics and cellular behavior. BA demonstrated a dose-dependent inhibitory effect in both mitochondrial respiration and glycolysis in A375 melanoma cells and at sub-toxic concentrations (10 µM) induced mitochondrial dysfunction by eliciting a decrease in the mitochondrial membrane potential and changes in mitochondria morphology and localization. In addition, BA triggered a dose-dependent cytotoxic effect characterized by apoptotic features: morphological alterations (nuclear fragmentation, apoptotic bodies) and the upregulation of pro-apoptotic markers mRNA expression (Bax, Bad and Bak). BA represents a viable therapeutic option via a complex modulatory effect on mitochondrial metabolism that might be useful in advanced melanoma or as reliable strategy to counteract resistance to standard therapy.


Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Melanocytes/drug effects , Mitochondria/drug effects , Pentacyclic Triterpenes/pharmacology , Reactive Oxygen Species/metabolism , Apoptosis/genetics , Cell Line, Tumor , Gene Expression Regulation , Glycolysis/drug effects , Glycolysis/genetics , Humans , Inhibitory Concentration 50 , Melanocytes/metabolism , Melanocytes/pathology , Membrane Potential, Mitochondrial/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/agonists , Signal Transduction , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , bcl-Associated Death Protein/genetics , bcl-Associated Death Protein/metabolism , Betulinic Acid
13.
Dev Comp Immunol ; 123: 104160, 2021 10.
Article En | MEDLINE | ID: mdl-34087289

The BCL2-associated agonist of cell death protein is a key participant in apoptosis dependent on mitochondria and in disease progression that involves the regulation of cell death, such as tumorigenesis, diabetes, sepsis shock, and epilepsy. Nevertheless, the mechanisms underlying the immune responses to teleost BAD bacterial infection and mitochondrial-dependent apoptosis remains unclear. In order to elucidate the mechanisms involved, in this study, a Ctenopharyngodon idella (grass carp) BAD gene named GcBAD1 was firstly cloned and characterized. The results indicated that the ORF (open reading frame) of GcBAD1 was 438 bp in length, encoding a 145-amino acid putative protein of 16.66 kDa. This deduced amino acid sequence has a better identity than another teleost species according to a phylogenetic analysis, and contains a Bcl2-BAD-1 domain. In healthy grass carp fish, the mRNA transcripts of GcBAD1 were widely present in the studied tissues, which could be ranked as follows; spleen > brain > middle-kidney > head-kidney > liver > gills > intestines > heart and muscle. In addition, during infection by Aeromonas hydrophila and Staphylococcus aureus, the mRNA transcription and protein levels expression of GcBAD1 in the head-kidney, spleen, and liver tissues of the fish were significantly up-regulated. Moreover, when the C. idellus kidney cell line (CIK) cells were incubated with Lipopolysaccharide (LPS) and lipoteichoic acid (LTA), the GcBAD1 expression transcripts were also significantly up-regulated. Additionally, overexpression of GcBAD1 in CIK cells was able to activate apoptosis-related genes, including those encoding p53, Cytochrome C (CytoC), caspase-3, and caspase-9. Besides, in the TUNEL assays, when pEGFP-BAD1 was over-expressed, the number of red signals associated with apoptosis were significantly increased in the CIK cells infected with LPS or LTA at 12 h. This study demonstrates that GcBAD1 has a significant role in the mitochondrial apoptosis pathway of grass carp's innate immunity. Our findings provide new insight into the potential mechanisms of teleost antibacterial immunity.


Aeromonas hydrophila/physiology , Carps/immunology , Fish Proteins/metabolism , Gram-Negative Bacterial Infections/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus/physiology , bcl-Associated Death Protein/metabolism , Amino Acid Sequence , Animals , Apoptosis , Cell Line , Cloning, Molecular , Fish Proteins/genetics , Immunity, Innate , Lipopolysaccharides/immunology , Phylogeny , Spleen , Transcriptome , Up-Regulation , bcl-Associated Death Protein/genetics
14.
Sci Rep ; 11(1): 9606, 2021 05 05.
Article En | MEDLINE | ID: mdl-33953223

Non-steroidal anti-inflammatory drugs (NSAIDs) showed promising clinical efficacy toward COVID-19 (Coronavirus disease 2019) patients as potent painkillers and anti-inflammatory agents. However, the prospective anti-COVID-19 mechanisms of NSAIDs are not evidently exposed. Therefore, we intended to decipher the most influential NSAIDs candidate(s) and its novel mechanism(s) against COVID-19 by network pharmacology. FDA (U.S. Food & Drug Administration) approved NSAIDs (19 active drugs and one prodrug) were used for this study. Target proteins related to selected NSAIDs and COVID-19 related target proteins were identified by the Similarity Ensemble Approach, Swiss Target Prediction, and PubChem databases, respectively. Venn diagram identified overlapping target proteins between NSAIDs and COVID-19 related target proteins. The interactive networking between NSAIDs and overlapping target proteins was analyzed by STRING. RStudio plotted the bubble chart of the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of overlapping target proteins. Finally, the binding affinity of NSAIDs against target proteins was determined through molecular docking test (MDT). Geneset enrichment analysis exhibited 26 signaling pathways against COVID-19. Inhibition of proinflammatory stimuli of tissues and/or cells by inactivating the RAS signaling pathway was identified as the key anti-COVID-19 mechanism of NSAIDs. Besides, MAPK8, MAPK10, and BAD target proteins were explored as the associated target proteins of the RAS. Among twenty NSAIDs, 6MNA, Rofecoxib, and Indomethacin revealed promising binding affinity with the highest docking score against three identified target proteins, respectively. Overall, our proposed three NSAIDs (6MNA, Rofecoxib, and Indomethacin) might block the RAS by inactivating its associated target proteins, thus may alleviate excessive inflammation induced by SARS-CoV-2.


Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antiviral Agents/pharmacology , Drug Evaluation, Preclinical/methods , Proteins/metabolism , SARS-CoV-2/drug effects , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Antiviral Agents/metabolism , Humans , Mitogen-Activated Protein Kinase 10/chemistry , Mitogen-Activated Protein Kinase 10/metabolism , Mitogen-Activated Protein Kinase 8/chemistry , Mitogen-Activated Protein Kinase 8/metabolism , Molecular Targeted Therapy , Protein Interaction Maps/drug effects , SARS-CoV-2/metabolism , Signal Transduction/drug effects , bcl-Associated Death Protein/chemistry , bcl-Associated Death Protein/metabolism , ras Proteins/metabolism
15.
Nat Commun ; 12(1): 2939, 2021 05 19.
Article En | MEDLINE | ID: mdl-34011960

Elucidation of non-canonical protein functions can identify novel tissue homeostasis pathways. Herein, we describe a role for the Bcl-2 family member BAD in postnatal mammary gland morphogenesis. In Bad3SA knock-in mice, where BAD cannot undergo phosphorylation at 3 key serine residues, pubertal gland development is delayed due to aberrant tubulogenesis of the ductal epithelium. Proteomic and RPPA analyses identify that BAD regulates focal adhesions and the mRNA translation repressor, 4E-BP1. These results suggest that BAD modulates localized translation that drives focal adhesion maturation and cell motility. Consistent with this, cells within Bad3SA organoids contain unstable protrusions with decreased compartmentalized mRNA translation and focal adhesions, and exhibit reduced cell migration and tubulogenesis. Critically, protrusion stability is rescued by 4E-BP1 depletion. Together our results confirm an unexpected role of BAD in controlling localized translation and cell migration during mammary gland development.


Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/metabolism , Mammary Glands, Human/growth & development , Mammary Glands, Human/metabolism , bcl-Associated Death Protein/metabolism , Amino Acid Substitution , Animals , Cell Line , Cell Movement/genetics , Female , Gene Knock-In Techniques , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Morphogenesis , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Organoids/growth & development , Organoids/metabolism , Phosphorylation , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Serine/chemistry , bcl-Associated Death Protein/deficiency , bcl-Associated Death Protein/genetics
16.
J Biol Chem ; 297(1): 100810, 2021 07.
Article En | MEDLINE | ID: mdl-34023385

Pulmonary fibrosis is a progressive lung disease often occurring secondary to environmental exposure. Asbestos exposure is an important environmental mediator of lung fibrosis and remains a significant cause of disease despite strict regulations to limit exposure. Lung macrophages play an integral role in the pathogenesis of fibrosis induced by asbestos (asbestosis), in part by generating reactive oxygen species (ROS) and promoting resistance to apoptosis. However, the mechanism by which macrophages acquire apoptosis resistance is not known. Here, we confirm that macrophages isolated from asbestosis subjects are resistant to apoptosis and show they are associated with enhanced mitochondrial content of NADPH oxidase 4 (NOX4), which generates mitochondrial ROS generation. Similar results were seen in chrysotile-exposed WT mice, while macrophages from Nox4-/- mice showed increased apoptosis. NOX4 regulated apoptosis resistance by activating Akt1-mediated Bcl-2-associated death phosphorylation. Demonstrating the importance of NOX4-mediated apoptosis resistance in fibrotic remodeling, mice harboring a conditional deletion of Nox4 in monocyte-derived macrophages exhibited increased apoptosis and were protected from pulmonary fibrosis. Moreover, resolution occurred when Nox4 was deleted in monocyte-derived macrophages in mice with established fibrosis. These observations suggest that NOX4 regulates apoptosis resistance in monocyte-derived macrophages and contributes to the pathogenesis of pulmonary fibrosis. Targeting NOX4-mediated apoptosis resistance in monocyte-derived macrophages may provide a novel therapeutic target to protect against the development and/or progression of pulmonary fibrosis.


Apoptosis , Disease Progression , Idiopathic Pulmonary Fibrosis/enzymology , Idiopathic Pulmonary Fibrosis/pathology , Macrophages/enzymology , Macrophages/pathology , NADPH Oxidase 4/metabolism , Animals , Cell Line , Female , Lung/pathology , Male , Mice, Inbred C57BL , Mitochondria/metabolism , Models, Biological , Monocytes/metabolism , Phosphorylation , Reactive Oxygen Species/metabolism , bcl-Associated Death Protein/metabolism
17.
Bioorg Chem ; 111: 104903, 2021 06.
Article En | MEDLINE | ID: mdl-33894433

A series of dihydroartemisinin-cinnamic acid hybrids were designed, synthesized and evaluated. Most of the tested compounds showed enhanced anti-proliferative activities than artemisinin and dihydroartemisinin, among which 16 g had the superior potency with IC50 values ranging from 5.07 µM to 7.88 µM against four tested cancer cell lines. The cell cycle arrest revealed that 16 g induced A549 cell cycle arrest at G0/G1 phase via regulation of G1-related protein expression (Cdk4). Further mechanism studies reveal that 16 g induced A549 cells apoptosis via inhibiting Akt/Bad pathway. Moreover, 16 g depolarized the mitochondria membrane potentials and induced ROS generation in A549. Additionally, 16 g blocked migration of A549 cells in a concentration-dependent manner. What's more, 16 g is barely nontoxic to zebrafish embryos. Overall, the cell cycle arrest, inhibition of Akt/Bad signal pathway, ROS generation and migration blocked might explain the potent anti-proliferative activities of these compounds.


Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Artemisinins/pharmacology , Cinnamates/pharmacology , Drug Discovery , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , bcl-Associated Death Protein/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Artemisinins/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Cinnamates/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship , bcl-Associated Death Protein/metabolism
18.
Eur J Pharmacol ; 902: 174119, 2021 Jul 05.
Article En | MEDLINE | ID: mdl-33930385

MUC1 seems to be promising target in cancer cells due to its abundant and specifically altered expression as well as differential distribution pattern relative to normal tissues. Rosmarinic acid (RA) is a natural, polyphenolic compound with pharmacological activities, including anti-cancer. Herein, we aim to explore the effect of combined action of anti-MUC1 and RA on selected cancer-related factors in AGS gastric cancer cells. Cancer cells were treated with 100, 200 µM rosmarinic acid, 5 µg/ml anti-MUC1 and acid together with antibody. Western blotting, ELISA and RT-PCR were used to assess the expression of MUC1, selected sugar antigens, enzymes participating in protein glycosylation, Gal-3, p53, pro- and anti-apoptotic factors, and caspases-3,-8,-9 in cancer cells. MUC1 mRNA was significantly suppressed by combined action of anti-MUC1 and RA. Such treatment markedly inhibited expression of cancer-related Tn, T, sialyl Tn, sialyl T, and fucosylated sugar antigens as well as mRNA expression of enzymes participating in their formation: ppGalNAcT2, C1GalT1, ST6GalNAcT2, ST3GalT1 and FUT4. C1GalT1 was suppressed also on protein level. Gal-3, factor likely participating in metastasis, was significantly suppressed on mRNA level by RA administrated with anti-MUC1. Pro-apoptotic Bax protein and Bad mRNA were significantly induced, and anti-apoptotic Bcl-2 mRNA expression was inhibited by such treatment. Combined action of mAb and RA markedly increased caspase-9 mRNA expression. Results of the study indicate that combined action of anti-MUC1 and RA is more effective than monotherapy in relation to examined cancer related factors. Such treatment can be considered as new, promising strategy in gastric cancer therapy.


Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents/pharmacology , Cinnamates/pharmacology , Depsides/pharmacology , Mucin-1/immunology , Mucin-1/metabolism , Stomach Neoplasms/drug therapy , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/metabolism , Blood Proteins/genetics , Blood Proteins/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Caspase 8/genetics , Caspase 8/metabolism , Caspase 9/genetics , Caspase 9/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Drug Therapy, Combination , Galectins/genetics , Galectins/metabolism , Glycosylation/drug effects , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Humans , Mucin-1/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Stomach Neoplasms/immunology , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , bcl-Associated Death Protein/genetics , bcl-Associated Death Protein/metabolism , bcl-X Protein/genetics , bcl-X Protein/metabolism , Rosmarinic Acid
19.
Hum Cell ; 34(4): 1123-1129, 2021 Jul.
Article En | MEDLINE | ID: mdl-33909263

It is known that Porphyromonas gingivalis/lipopolysaccharide (P. gingivalis/LPS) induces inflammatory diseases via TNF-α-mediated transcription factors. Our recent data shows that TNFAIP1 (TNF-α induced protein 1) is related to TNF-α. However, little is known regarding how TNFAIP1 is involved in the TNF-α-dependent pathway. We therefore focused on the biological function of TNFAIP1 and examined how TNFAIP1 mediates TNF-α and other genes. We found that TNF-α was upregulated and peaks before the upregulation of apoptotic genes such as Bad, Bcl-x, Caspase 3, Catalase, Claspin, Cytochromic, Ho-1/HMOX1/HSP32, or MCI-1 in our time course with TNFAIP1-treated cells. Our findings here may serve as the foundation for future studies linking regulation of TNFAIP1 and intervention of inflammatory disease.


Adaptor Proteins, Signal Transducing/physiology , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Apoptosis/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Humans , Inflammation/genetics , Lipopolysaccharides/adverse effects , THP-1 Cells , Up-Regulation/genetics , bcl-Associated Death Protein/genetics , bcl-Associated Death Protein/metabolism , bcl-X Protein/genetics , bcl-X Protein/metabolism
20.
Sci Rep ; 11(1): 9103, 2021 04 27.
Article En | MEDLINE | ID: mdl-33907248

(-)-Epigallocatechin-3-gallate (EGCG), the major active polyphenol extracted from green tea, has been shown to induce apoptosis and inhibit cell proliferation, cell invasion, angiogenesis and metastasis. Herein, we evaluated the in vivo effects of EGCG in acute myeloid leukaemia (AML) using an acute promyelocytic leukaemia (APL) experimental model (PML/RARα). Haematological analysis revealed that EGCG treatment reversed leucocytosis, anaemia and thrombocytopenia, and prolonged survival of PML/RARα mice. Notably, EGCG reduced leukaemia immature cells and promyelocytes in the bone marrow while increasing mature myeloid cells, possibly due to apoptosis increase and cell differentiation. The reduction of promyelocytes and neutrophils/monocytes increase detected in the peripheral blood, in addition to the increased percentage of bone marrow cells with aggregated promyelocytic leukaemia (PML) bodies staining and decreased expression of PML-RAR oncoprotein corroborates our results. In addition, EGCG increased expression of neutrophil differentiation markers such as CD11b, CD14, CD15 and CD66 in NB4 cells; and the combination of all-trans retinoic acid (ATRA) plus EGCG yield higher increase the expression of CD15 marker. These findings could be explained by a decrease of peptidyl-prolyl isomerase NIMA-interacting 1 (PIN1) expression and reactive oxygen species (ROS) increase. EGCG also decreased expression of substrate oncoproteins for PIN1 (including cyclin D1, NF-κB p65, c-MYC, and AKT) and 67 kDa laminin receptor (67LR) in the bone marrow cells. Moreover, EGCG showed inhibition of ROS production in NB4 cells in the presence of N-acetyl-L-cysteine (NAC), as well as a partial blockage of neutrophil differentiation and apoptosis, indicating that EGCG-activities involve/or are in response of oxidative stress. Furthermore, apoptosis of spleen cells was supported by increasing expression of BAD and BAX, parallel to BCL-2 and c-MYC decrease. The reduction of spleen weights of PML/RARα mice, as well as apoptosis induced by EGCG in NB4 cells in a dose-dependent manner confirms this assumption. Our results support further evaluation of EGCG in clinical trials for AML, since EGCG could represent a promising option for AML patient ineligible for current mainstay treatments.


Antineoplastic Agents, Phytogenic/pharmacology , Catechin/analogs & derivatives , Leukemia, Promyelocytic, Acute/drug therapy , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Reactive Oxygen Species/metabolism , Animals , Apoptosis/drug effects , Catechin/pharmacology , Cell Differentiation/drug effects , Humans , Leukemia, Experimental/drug therapy , Leukemia, Experimental/mortality , Leukemia, Experimental/pathology , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/pathology , Mice, Transgenic , Retinoic Acid Receptor alpha/genetics , Spleen/drug effects , Spleen/pathology , bcl-2-Associated X Protein/metabolism , bcl-Associated Death Protein/metabolism
...